

The Impact of Learning in Mother Tongue First: Evidence from a Natural Experiment in Ethiopia

Yared Seid International Growth Center

RISE Conference

June 16, 2017

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

MOTIVATION

- This paper offers empirical evidence on whether students taught in their mother tongue first learn in English better later
- Why do we care about this?
 - There's a move to mother-tongue instruction in many LDCs
 - Students transition to English-instruction after completing few years of schooling
 - However, the effect of moving to English instruction on the performance of students from different language groups is not well understood
 - ► The differential effect may set students from different language groups to different trajectories

KEY FINDINGS

- ► We exploit the 1994 education reform in Ethiopia and estimate triple-differences models
- ► Finding: learning in mother-tongue first increases mathematics test score by 0.114 standard deviations
- The effects are relatively stronger for kids in rural areas

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 Falsification tests suggest that our results are not confounded by other factors

イロト 不得 とうほ とうせい

= 900

Rest of the talk

SCHOOLING & LANGUAGE IN ETHIOPIA

DATA Data

METHODS Methods

RESULTS Results Falsification Tests

CONCLUSIONS

MOTIVATION	Schooling & Language in Ethiopia	Data	Methods	Results	CONCLUSIONS
		000	00	000	

SCHOOLING & LANGUAGE IN ETHIOPIA

- The 1994 education reform has introduced mother-tongue instruction in primary schools
- Thus, language majority students learn in their mother tongue
- States in Ethiopia also choose when students transition to English instruction
- ► As a results, students transition to English instruction either in grade 5, 7 or 9
- ► We estimate triple-differences exploiting the variation in
 - the timing of transitions to English instruction across state and
 - prior exposure to mother-tongue instruction across language groups

DATA SOURCES

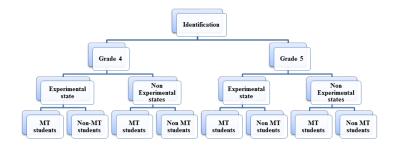
- Data from the 2012-2013 Ethiopian school survey, which is administered by Young Lives, are used
- We observe
 - ► basic household-, student-, and school-level characteristics
 - students' mother tongue and language of instruction at school
 - scores on math tests that are administered to grades 4 and 5 students
- The sample of analysis is restricted to
 - students who have attended the same school since grade 1
 - students who attend public schools

MOTIVATION	Schooling & Language in Ethiopia	DATA	Methods	Results	CONCLUSIONS
		000	00	000	
		000	00	000	

VARIABLES

 The dependent variable is students' test scores on math tests

 We control for a number of household, student, and school-level characteristics in the regression


		mental ate		erimental ates
	MT students	Non-MT students	MT students	Non-MT students
Math Z-score - Wave 2	0.192	0.018	0.144	0.051
Math Z-score - Wave 1	(0.691) 0.091 (0.123)	(0.061) 0.009 (0.012)	(0.465) 0.131 (0.218)	(0.045) 0.007 (0.701)
Observations	1642	698	3122	792

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Table 1 : Descriptive Statistics of Math Scores

ing & Language in Ethiopia	Data	Methods	Results	Conclusions
	000	•0	000	

TRIPLE-DIFF MODEL

MOTIVATION	Schooling & Language in Ethiopia	Data	Methods	Results	CONCLUSIONS
		000	0.	000	

TRIPLE-DIFF MODEL

► We've estimated the following triple-diff equation

$$\Delta Score_{igs} = \beta_0 + \beta_1 Exp_s + \beta_2 After_{igs} + \beta_3 Treated_{igs} + \beta_4 (Exp_s * After_{igs}) + \beta_5 (Exp_s * Treated_{igs}) + \beta_6 (After_{igs} * Treated_{igs}) + \beta_7 (Exp_s * After_{igs} * Treated_{igs}) + \mathbf{X}_{igs} \mathbf{\gamma} + \phi + \psi + \epsilon_{igs},$$

where

 $\Delta Score = Score_{wave2} - Score_{wave1};$ $Exp_s = \text{experimental state dummy};$ $After_{igs} = \text{dummy for grade 5 students};$ $Treated_{igs} = \text{dummy for language-majority students};$ $\mathbf{X}_{igs} = \text{a vector of control variables};$ $\phi \text{ and } \psi \text{ are class and school fixed effects}, \text{ respectively}, \quad \Rightarrow$

	(1)	(2)
Exp	0.113 (0.162)	0.101 (0.153)
After	0.153*** (0.013)	0.150*** (0.038)
Treated	0.163* (0.096)	0.147* (0.077)
Exp * After	0.200*** (0.018)	0.183*** (0.026)
Exp * Treated	0.215** (0.089)	0.193** (0.096)
After * Treated	0.228*** (0.071)	0.219* (0.116)
Exp * After * Treated	0.125*** (0.026)	0.114*** (0.022)
Student- & school-level controls	Yes	Yes
Household-level controls	No	Yes
Observations	6254	6254
R-squared	0.511	0.538

Table 2 : Triple-differences Estimates

FALSIFICATION TESTS

- ► In the falsification test
 - we restrict the sample to *non-experimental* state only
 - then, we randomly assign observations into *placebo* treatment and control groups
- ► In the falsification tests, the coefficient estimate of the interaction term, Exp_s * After_{igs} * Treated_{igs}, is insignificant
- This confirms that the positive treatment effect presented in the main (triple-diff) analysis is driven by learning in MT first

	(1)	(2)
Exp, placebo	0.055 (0.162)	0.062 (0.105)
After	0.076** (0.037)	0.082** (0.039)
Treated	0.079* (0.042)	0.080 (0.056)
Exp, placebo * After	0.089 (0.100)	0.165 (0.109)
Exp, placebo * Treated	0.117 (0.095)	0.104 (0.090)
After * Treated	0.063* (0.038)	0.082 (0.053)
Exp, placebo * After * Treated	-0.018 (0.021)	0.006 (0.016)
Student- & school-level controls	Yes	Yes
Household-level controls	No	Yes
Observations	3914	3914
R-squared	0.231	0.255

Table 3 : Falsification Test: Triple-differences Estimates

CONCLUSIONS

- We document whether learning in mother tongue first help students perform better after they transition to English instruction
- We exploit the variation in the timing of transition to English instruction and exposure to MT instruction by language group
- Using these variations, we estimate triple-differences model
- We've found that learning in MT first improves students performance later after they transition to English instruction
- Note that we only document here the short-term effect of learning in mother tongue first